Here the longitudinal wave uy has a dispersion similar to that of the transverse wave in the previous case with
¢t replaced by ¢g, and the transverse wave ux propagates with a phase velocity ct.

If the field H is large and the angles are close fo 7 /4, we get from (15) that

— 2a%(k/d) sina-cos au, + {— 0* + 2a*k/d) cos’a) u, = 0;
{ —? 4 2¢°(k/d)sin? eju, — 2a%k/d)sina- cosz-u , = 0;
( — @ + 2a%/d)u, = 0.

The wave uy propagates independently with agroup velocity (a/V 2% -k/k). Thedispersionrelationship for the waves
Ux, Uz
o? = 2a°k/d

leads to a group velocity a/)/2x-k/k. Thus all three deformations propagate along the vector k with an identical
velocity Uy independently of the angle of inclination a,

We now give some numerical caleulations. The Alfvén velocity is comparable with the velocity of sound
in an elastic medium when H* ~ J'E (for steel E=2-10% kg/cm?, when H*~10% Oe). For a thin film H*'—
V Edln, where A is the wavelength; i.e., when d<«Athe magnetic field begins to affect the deformation at much
smaller values of H. Moreover, a conducting layer can be deposited on films of materials with small values of
Young's modulus (for example, rubber, polyethylene, and so on), and for these the effects will begin to occur at
magnetic fields of the order of a few oersteds.
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SCATTERING AND VELOCITY DISPERSION
OF ULTRASONIC WAVES

IN POLYCRYSTALS OF ORTHORHOMBIC
SYMMETRY

A. A, Usov, A, G. Fokin, UDC 534,22
and T. D. Shermergor

The scattering coefficients and the velocity of propagation of longitudinal and transverse ultra-
sonic waves in polycrystals of orthorhombic and higher symmetry are computed by the method
of renormalization of the equations of motion. The formulas thus obtained are compared with
the known asymptotic expressions for long and short waves. A numerical computation carried
out for aluminum shows that for qa ~1 (q is the wave number; a is the correlation scale) the
power index determining the frequency dependence of the scattering coefficient decreases mono-
tonically from 4 to 2 for the traxsverse waves, while for the longitudinal waves this dependence
is nonmonotonic, i.e., the power index decreases from 4 to 1, after which it increases again to
2. In the Rayleigh region (q;a < 1) the scattering coefficient of the longitudinal waves increases
with a power index smaller than 4.

A large number of studies has been devoted-to the scattering of ultrasonic waves at the inhomogeneity
grains of crystals; a review of these studies is given in [1]. The complexity of the computation leads to the re-
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510
TABLE 1
Material 1t (——.-r“ PRALNN. NSt 23 (13 T4y ) Y]

COad fOrad FOean) Jirae) [Cene) [Cened [heag) [ [fee)
Topaz 0,865 1,101 0,905 1,364 0,959 0.905 0,925 1,136 1,119
MgS0,-7H20 1.016 0,770 1,196 1,233 0,895 0,891 0.577 1,257 1,198
Mg=SiOy 1.330 0,813 4,022 0749 0,991 1,003 0.809 0.983 0,962
Na tartrate 0,870 1,032 1,255 0,858 1,036 0.960 1.262 0,315 0,997
Seignette salt 0.809 1,036 1.275 0.807 1.008 1,090 1,321 0,325 1,029
HIO; 0,675 4,212 0,972 1.376 0.636 1.353 1.010 1.209 0,955
Argonite 1,555 0,849 0,820 1,689 0.711 0.076 1.045 0,632 1,037
SrS0, 0,983 0,999 1,211 1,105 0,884 0,864 0,745 1,540 0,149

sult that usually the investigation is restricted to the long-wave and short-wave asymptotic forms and the re-
gion for which the wavelength is of the same order as the average size of the grains remains uninvestigated.
The object of the present work is to compute the velocity of propagation of ultrasonic waves and their scatter-
ing coefficient in the entire range of wavelengths.

1. We shall assume that the symmetry of the polycrystal is not lower than orthorhombic and we carry
out the computationwith the correlation approximationproposed in [2]. The procedure of computation is dis-

cussed in [2, 3], where it is shown that for determining the velocity and the scattering coefficient it is neces-
sary to evaluate the integral

Ipgrs = [ Gor (v, )@ (r) cos qr],qsdV, (1.1)

where Gpr is the Green's tensor of the wave equation for a medium with averaged properties; ¢ {r) is the coor-
dinate dependence of the binary correlation function of the elasticity tensor, which for the polycrystals is taken
in the form ¢ &) =exp (—r/a); qis the wave vector; a is the correlation scale; and the indices occurring aftera
comma denote differentiation with respect to the corresponding coordinate.

For evaluating integral (1.1) we make the change of variables q=ql, qr =¢ =(n and expressthe frequency
in terms of the wave number with the use of the formula q=w/c, where c is the phase velocity in the medium
with averaged properties. Then integral Ipgpg can be written in the form

Logrs § [Rpeg + 8,,h) E (320,08, (e~ cos &) dEQ, ; (1.2)
Rpge. o==Hp Rg...Ny, == 1/qa, dQ, = dE/E*E, (1.3)

where the explicit forms of functions g and h are given, for example, in [2]. Equation (1.2) is valid for longi-
tudinal and transverse waves. In the first case, all the quantities must be expressed in terms of q;, ¢, £7,
s7 , while in the second case they must be expressed through qt, ct, £¢, st. The velocities ¢; and ¢t are de-
fined in [3]. The functions g and h for the longitudinal and transverse waves are respectively equal to

4aplc®Eg(E, ¢, %)y = [(E* — 3 — Bi)e~8— (w*E*—3—3ink)e— 4], 1.4)
4nplB(E, ¢, #)lg = [(1E4-1)e— 184 (B —1—inE)e—E];
4npletB%(E, ¢, m) ey = U3 — B + 3il)e—8 + (w222 —3—Bink)e—ib)y, (1.5)

4rplc?Bh(E, ¢, w) Iy = [(B2 — 1—ik)e— 184 (ixE - 1)e—ixt],,
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where the index [ enclosed in parentheses denotes that the quantities &, ¢, %, g, h must be replaced by £, ey
%y, g1, h; and similarly for the index t:

% = oley, ®p = clen {1.8)
Comparing expressions (1.4), (1.5) we find that the functions g¢, g7 and ht, hy are related through the formulas

g3, e %y) = — gy, Cps Hy)s 1.7
gy (&g €4y ) = — W&y, op, %) -+ [(1/Ampe?)(e—i8- we—ing) |y,

which enable us to evaluate integral (1.2) for the case of transverse waves from its value for the longitudinal
waves. '

Carrying out differentiation under the integral siga in (1.2) and integrating over the angles, we obtain

Tpyre = [g(E o)™ (51— 8,0, + (1 + §) T pgys +
18 pry + LET gl — LB, dE = [R(E, o, )™ x (1.8)
s [ = 8p,80) + (I + £9) 8,0 g + LgEOp, s + 1,885, T5] — Loy, ] dE;

T pars = | 1y 0% E1AQ, = (A/E) 1y, (B sin E +
+ 108 cos E — 45E sin & — 105E cos & + 105 sin §) + ., (—Eeost + (1.9)
+ 6E*sing 4 158 cos & — 158in E) -+ 8,4, (— E¥sin & — 3Ecos & - Jsin Bl
Tpr = T pgrq == (43/EY 2, (Esink L+ BEcos & — 3sink) + §,.(sint — Ecos 8]y J = Jpp = (4a/E)sing;
Jpre = | ppy sin E1Q, = (4r/ENL,, (— B cosE — GE2sin & - {58 cosE — \
—15sing) — (1,8, + 1, 8y + 8,0 NE sin & + 35 cos & — 3sing)];
Jo= Ty, = (Ga/E) 1, (sin& — & cos E);
Lpgeoov=s Dol 15 Bpge= 81800 + 858+ 8,8,
Yo = Lo+ L8 18,0 -+ 1,8, — Lidpr 1,8,
We now carry out the integration of (1.8) with respect to ¢£. For this purpose we make use of formulas (1.9)

and also (1.4) or (1.5) depending on whether the computation is carried out for longitudinal or transverse waves.
The substitution leads to the integrals

Jns=T{ e e sinkde;  J,, = [ e PE " cos BdE:
0 0
e n . - (1'10}
ns ={ e ™ ET"SInEE;  j,. = [ e *E " cos EdE
U 2
where
a=s+14 B =5+ ix (1.11)

After carrying out the computation, we get

Jos = V(4 + B%); Joe =B/ +8Y; Jp, = J, = arctg(1/B);
ch = Jc;
Joys =1+ T, —BJs Ty =86 — B —J, — BJ.;
3o = (1/2)128 — 38 — 2BJ, + J (B2 — 1)];
Te = (1/4) [28° — 46p + 38> — 3 - 27, (B°—1) + 4pJ,];
Ty = (1/36)[186% — 366f - 338> — 11 4 6/ (3p° — 1 + 6BJ.(3 — P))];

Jye = (1/36)[126° — 188°p -+ 185(8* — 1) -+ 338 — 11p* + GBI (3—P2)+ 67,(1 — 389);

Jos = (1/72)[246° — 366%p + 128(3B> — 1) + 25p — 25p% + 12BJ, {1 — B2) + 37, (1 — 6B -+ BH1; (1.12)
Soe = (1/288)[728* — 966°p + 728%(B> — 1) + 486P(3—PB?) +
-+ 25 — 15082 + 25B*% 4~ 127(B+ — 6B 4 1) 4887 (B? — 1) 1;
Jos == (1/7200)[18008* — 24006°8 + GUOSX(3% — 1) -+
-+120085(1 — B7) + 6858 — 137082 + 137 + 60J,(5p* — 10B* + 1)+ 60BJ( — 5+ 10p? — B 1
Joe = (1/7200)[14406° — 180068 + 12006%(p* — 1) +-
+ 6008°8(3 — B*) + 3008(p* — 6B* + 1) — 6356 + 1370p* —
—137p° + 60BJ(— B* -+ 10B2—5) + 607 (— 1 + 10p2— 5p1)];
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J., = (1/21600)[43208° — 54006%F + 12008%(3p* — 1) + 18008°p(1 — [32) -~ 1808(5p* — 10p2 + 1) — 441p +
+ 147082 — 44105 -+ GOBJ(— 3B* + 10B* — 3) - 30T (— 1 & 15p% — 15p* & B9 1.
Here 1/6 is an infinitely small quantity which is introduced into the integral (1.10) instead of the lower limit.

The integrals with parameter @ can be obtained from this integral by a formal substitution of 8 by . For-

mulas (1.12) were evaluated by integration by parts after which the functions e-B/d , sin (1/8), and cos(1/5)
were expanded in series,

2. Let us consider the longitudinal waves. For this case the quantities ¢, g, s, %, 8, @, etc., must have
the index 7 (exceptions are only p, w,anda). However, for simplifying writing we shall omit the index. Using
integrals (1.12) and expressions (1.4), (1.9), from formulas (1.8) we get

]pqrs == lpqrsF "‘ lppqrsF‘ + 61.:(11 F3 e 6prlqu4 0 8 r6 F.—,v (2.1)
pe*F, = R, (B. x) — §,(a) + Q.la, B, %). 2.2)

where the functions Rp(8, ®) are given by equations

SR(B, ) = [23p + 21 — 3BJ (3 + 10B% — TpYH1 —
4+ (1/2)s[(233/5)B -+~ (142/3)% — 7P° — J (11 + 63p* + 45p* — 7p%)] +
F120B% — BJ (4 = B 1+ixs*l— 538 — 1054° + 3J, (3 + 30B* — 35B%) +
ins[—114/5—97B2--21B* + 3BT, (21+ 3082 — 7841+ 12 [— 3B + J (1 +
43831 — wa22{2/(1 + B%) + 10/3 4- 3582 — 57, (3 + 7B — uzs[ -
— 1(5[37(-1—;—132) (305/3)B — 33B° — J (21 + 90p* — 358" ] — 8x* [— (1 + B) + 3 — 37, ];

8R.(B. x) = s2[ — 5% — B! L 3BJ (1 - 2B + Y] - (L.z)s(— (39/%_

— (10°3)B% + § - T (5 + 9B + 38% — B9 = ins*[13p + 13p° —
— 3T L+ BB - BY] L ixs[325 + TR — 3Bt — 3BT (3 + 282 —
— AH] e s-[&’S 4 BB — BJ A3 - 5BN] - «351(23/8)p — 5BS —T (3 = 6B — BEY 2.3}
ion (ga = s*[9f2 + 3B -+ 8J, — BJ. (15 - 10B* — 3pH] —
~(12) (ﬁ:s,'ls)ﬁ — (14/3)B% — B> — 16BJ, -~ J(— 5 = 15p® = 5p¢ +
+89%) J N azxs-{— 385 — 5B < 371 = 287 4+ B 4 ins[184/15 L 9§ +-
3Bt - 87, — T B(15 - LOB? -+ 3BY)] — 20u%2{2/3 - B — st(l + Byl —
—5us[— B —(5/3)p + J (1 + 28 + fYL;
4(6 v) = @ — S+ 8] = sHUBR — B = TR~ D) =
(= B T B B instl — 3B - T+ 3D — 4iusil/3 —
—p2 Tﬁfs)—u.l—éﬁ—.}'{aﬁ" )
BRAB, ®) = 2 — B2 — 27, -~ BJ(3 + 8] = s[(14/ );s ~
B 28T, — B3 + BN — Binst] — P+ J,_((l + B — 2ixs[7/3-H2P* - T, — I B(3 + 2p1].

The corresponding expressions for Sy(e) are obtained from those of Rup(8, W if in formulas (2.3) we make the
substitutions 8 —a, n—=1, J5—js, andde—jc. The quantities Qnla, B, ®)are expressed in the form

Qr= Qs =0y =0, Q, = ¥/ + B — 3 — 3pJ 1+
96’(1~5)~L3§ + T — 3] + 2Bl + B — BT, ) +

L (1/2)s]— 30 = j (1 + 3a)) + [ — 1 + aj,]; 24
Qs = %221 — BJ, ] + w3sl— B =+ B2 1 + (1/2)sla — j(1 -+ a?)1.

r:-

m

A,{_.

The variables « and B are complex. Their real and imaginary parts are given by formulas (1.11). Using these
formulas we change over to variables s and % and separate the real and imaginary parts in functions Jg and
st

Jo = (1/2)aretgl2s/(s* + #* — )]+ i(1/Hn{{s* + (x — 12 P/1s* + 206 + 1)s* + (€ — 1)*]};

(2.5)
js = (1/2)arctg(2/s) — i(1/4)In(1 + 4/5%).

We now substitute (1.11), (2.5) into (2.2)-(2.4). This enables us to separate the real and the imaginary parts of
function Fy:

Fn = Qa5 + ibn, (2.6)
where the coefficients ay, and by are given by the formulas

octa, = (5/16)[14(x> — f)s* -+ (— 23 + 16%% + Tu¥)s?] — ($* 4+ 5)/(s* + 4) + Py — P,Py + P,Py;
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pcia, = (1/16)[10(1 — %%)s* + (13 — 8x% — 5ud)s?] + PPy — PP
pcta; = (1M46)[2(x® — 1)s* 4 (x* — 1)s*] — P,P, -+ P,Py;
pcta, = — 1,5u%% — P, + P,Py,; pcla; = 0,5%%* — PPy

0%, = (5/48)[— 2Py + (76 — 21x — 343 — 20)s] — Py —+ 2/s(s* -+ 4) — Py ,Py — PPy .7)

pctby, = (1748)[15Py + (— 44 -+ 150 + 14se® + 15%%)s] + PPy -+ Py P
pcthy = (1/48)[— 3P, + {4 — 3 -+ 2u3 — 3u®)s] — P13Pe — Py, Py
pcby = 1,503 4 Py + PPyt 06%by = — 0,5u% — PPy,

The quantities Pp are of the form ]
Py=(n —1)s® -+ 2(— 2 -+ 5% + ¥
Pp= {#*s' = (2 + 3 + (1 — ) V[st+20? + D>+ (2— 1)2]);
P, = (1/2aretgl2s/(s2 + 22 — 1)1; Py = (5/16)[7s7 +
4 24{1 - 23 $-3(7 -+ 10%® 4 Tuet)s® - (7 + 92 + 9nd + Tu)s);
P, = (1/2)arctg(2/5); Py = (5/16)[7s7 -+ 42s° 1+ 72s% 4~ 32s];
Py o= (116)[5s7 + 15(1 -+ %?)s® -+ 3(5 + 6x> - 5uf)s® + (5 4+ 3x2 -+
Bt = Bl Py = (1MB)[557 4 30s° -+ 486 - 16s); Py = (1/16)[s" - (2.8)
4+ 3 = %) (3 4 2% 4 3uhs® (1 — % — ut - uf)s); Py =
= (LA6)[s7 - 6s® 4 8], Prp = 1,5 #%[s® + (x* + 1)]; Py =
= 0.0w%[s? — (22 + 1)} Ppy = 20%/[s* 4+ 202 4+ 1)s* + (x* — 1)2];
Py s (08I 4 (6 — 12P/Ls* + 2002 4 1) - (o2 — 1)2]:
Py = (1/4)n(1 + 4/s%).

It is evident from the obtained results that after appropriate algebraic manipulations associated with the eval-
uation of integral Ipgrg the large parameters 5% and J, occurring in (1.12) mutually cancel out; this avoids the
need of making the limiting transition 1/6 —0 in the final formulas.

3. Let us evaluate integral (1.2) for the transverse waves, For this purpose we must substitute the ex-
plicit values of functions g and h in accordance with (1.5) and of integrals Jpgrs and Jpgr in accordance with
(1.9) into the expressions (1.8). Another simpler method consists in using formulas (1.7)-(1.9) which allow us
to use the final formulas (2.3), (2.4) for the longitudinal waves.

The quantities (computed at this point) an, by, etc., and also variables ¢, g, 1, s refer to the transverse
waves and therefore must have the index t. As in §2, for the sake of simplicity, we will drop index t in
these quantities.

As before, integral Ipqrs is determined by expressions (2.1), {2.6); however, now coefficients ap and by
will be written in the form

pctay = (56)[14(1 — x2)s* + (23 — 162 — Twd)s?] —
— st (2 + ) + (1 — w) /st + 2002 + 1) + (02 — 1)2] + uy -+ wouy — Ul
pcfay = (1/16)[10(%* — 1)s* + (—13 + 8 + 5ud)s?] — upug - uyuy;
pciag = (1/16)[2(1 — %¥)s? + (1 — x)S] + wug — u,uy;
pcfay = —1,58% — u; + uuyg; pclay = 0,588 — u,uyg;
pcby = (5/48)[—2Aug + (—76 + 21% 1 348 + 2Und)s +- (3.1)
+ 2%/ [st + 2% 4+ 1) A (0 — AP] — wyy b ouggus - g ug;
peby = (1/48)[15u, + (44 — 15x% — 14%® — 15u%)s] — uyqty —Uyglin;
pc*by = (1748)[— Buy + (—4 4 3% — 243 + 3u®)s] — uyyus + Uy glt;
pc2by = 1,55 + wyy — Wyl 0ty = —0,55 + uyuy,.
Here the quantities upy are of the form
Uy = (1 — %)s® + 2(2 — % — u¥)s?; uy = (2 + 5)/(s* + 4);
uy = (1/2) arctg [2s/(s* 4+ »* — 11;
uy = (5/16)[757 + 21 + 23)8 + (7 + 100> + Tu¥)s® + (7T + 9 - 98 -+ Tod)s];
uy = (1/2) arctg (2/5); ug = (5/16)[7s7 4 4255 + 7257 & 32s]; u, =

= (1/16)[5s7 + 15(1 + x2)s® + 3(5 + 62 - 5ud)s® - (5 L 3u2 - 3t - 5%8)s]; (3.2)

447



u; = (1/16)[55" + 305° - 485 4 16s]; ug = (1/16)[s* + 3(1 + x¥)s® +
- (3 + 2% -+ 344)33 + (1 — e — xt + 28s); uy = (1/16)[s7 = 6s°+8s3];
Uy = 1.38(s* -+ 2); uy; = 0.,55(s® + 2); uyy = 2/s(s® = 4);
upy = (1/4) In {{s* & (% — 1)21¥[s* =+ 202 + 1)s® + (w2 — 1)2]};
Uy = (1/74) In (1 + 4/s%).
4. In order to compute the scattering coefficients of longitudinal and transverse waves andtheir propaga-
tion velocities from the known integrals Inqrs we make use of the formula [2]

Cit = Afn Tparelim
Substituting (2.1), (2.6) into this formula we get
Cit = (a1 + 1)) Lympare A - (2 + DY & mrg AR - 2L apg AT +
L (@ = D)Ly AT+ 2 AL - (@ + 153) Dymyg ATk + (a5 + b o) LmATE
Depending on which of the waves are being cons1dered1qua.nt1tles an and bn will be given by formulas (2.7),

(2.8) or (3.1), (3.2). The contractions of the tensor Alkpq for orthorhombic symmetry are well known [3].
Substituting their explicit value, we obtain

Cop = (% = w*)y — w8y ¥ o= by dhyy W = gy = iy
Mo+ = Adgay + 20245 - A)a, - (A = 24.0a, — Asa, + Aqay;
}”2 + e = A9b1 =+ 2(2A5 -+ A1)b-z -+ (A3 + 24 7)173 - A;,b.; - A;’J;,; 4.1)
Wy = Aya;, + 224 — Ada, + (4, + 240)a, - A, — A,
fa = A by + 20244 + A)0s -+ (A, + 240D, — A, - A,D,.
The scattering coefficients of the waves and their velocities are found from formulas similar to those given in
[2, 3]:

|4 f !
, Hs (z) RE(g) 205 ()
Vi (St) 29{1 ) 3 Yl (Sl) 2pa3161 )
t
vi (8;) = ¢ + Acys vis;) =+ Ac; 2p0,Ac, = pf (s;) — s dy;s(s‘); 4.2)
t
20cA¢; = Al L1 (81) + 2111 (s)) — 8 — d [}\,1 (s) — 2u, (s'l)]
Substituting A and pi from (4.1) into (4.2), we get
.“-t‘.’ {s) = Hb\(s) + H._,b!_:(st) + Hsb:tf (sg) + Hb, {5¢) + Hb, (83
RS (s) 4 2ub(s)) = Hob' (s1) -+ H bi(si) + Hbiy(s)) -+ Hbi(s)) + Hgbs (sp):
2pciAe, = H, [ai (s — 5, 202t " Ia»m N ”} +
t
Zaf ] )
iy [a;{(sn g 250 ”] H;[a (s0) — 8, 2l ’} +Hs [aa(« ) — s d\( : } “.3)
t
di S &
200Ac; = Hc[ af(s) —s a:,:l I)J +H, [ ai(s) — s da{;( l)} L
1

| +Hs[aa(3l — S 3( )J . Hs[“&(“z)—szda (1 )]+H10[aé(s,)—s,d.“§(“l)]_

ds,

Here we have introduced the following notation:
Hy = A, = By, H,=224,+ A,) = (2/3)(B; + 3By);
Hy=A,+ 24, =3By H; = A; = B,y H; = A; = (3/5)(2B; + B,);
Hi= Ay + A;p = By
O, =224, - 24, + A, & A,) = (098, — 24B,, + 4B, + 12By); 4.4
He= Ay~ A, =24, + 24, = 3B;; Hy=A; + A4¢ = B,;
Hy = A; + Ag = (110)(15B, - 12B; + 16B)),

where the coefficients Ay and B, are expressed in terms of two-index elasticity constants with the use of for-
mulas given in [3]. It is evident from the formulas obtained above that for computing the scattering coefficient
Yy of longitudinal waves we must use the second of formulas (4.2) in which the numerator is expressedinterms
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of the known coefficients By with the use of the second of formulas (4.3) and (4.4} and in terms of functions by
with the use of formulas (2.7), (2.8). In changing over from parameter s to the wave number ¢ we must make
use of the formula sj =1/qlawhich follows from (1.3). The quantity ; is found with the use of the first for-
mula in (1.6). Similarly, the scattering coefficient y¢ of the transverse waves is computed from formulas
(4.2)-(4.4), (3.1), (3.2}, (1.3), and the last of the formulas in (1.6).

5. In order to compute the frequency dependence of the velocity of propagation of the longitudinal waves
we make use of the fourth formula in (4.2) and (4.3). Formulas (2.7), (2.8) enable us to obtain the following
expressions:

oc*(a, — sdal/ds) = (5/16)[42(1 — »%)s* + (23 — 16%> — Tuh)s?] -~
+ (13/8)P,s#[7s + 141 - *)s* - {7 + 10%* + Tx*)] — (15/8) P ,%(7s* +
S 286 4 24) — (s* -k 12 = 20)/(s 4 4 - Py — PyoPy 4 PPy
oca, — sday/ds) = (1,16)[,3(7(»4- — st + (— 13 + 8x* + Sut)s*] —
— (3/8)P,s*[3s* + 1()(1 + %5t (5 L Bx? L Sut)] + (3/8)P ¥ (Bst - 2082 = 16) + PPy — PiiP; {(5.1)
ocf(a3 sdayds) = (1/16){6(1 — %¥)st + (1 — xH)s] + (1/8)P,s*(3s* +
4 6(1 - %)s* - (3 4 2 = 3xh] — (1/8)P 5% (3s* L 1267 + §) —
— PPy 4= P3Py pcXa, — sday'dsy = 1,5%%° — 3P — P +
2 PPy oc¥as — sday 'ds) = — 0,0u%* + P — PP

where P, for n =0-14 are given by expressions (2.8), while for n = 15-17 they are given by the formulas

Py = (wIs 2 — 1)t (2 — 1P - (4 + Tud)s .
{6 + Hy? -+ 3utst 4+ (4 - — .‘Zx* — 3u%)s® 4 (1 — 3% -+ 3xt O ]; (5.2)
L= — (6 — ) st + 20* - 1)82 + (%2 — 1FL Ppy = s/ + 4.

Since in formulas (5.1), (5.2) all the quantities refer to longitudinal waves, they must have index [, which has
been omitted for the sake of simplicity.

It follows from these results that the velocity of propagation v of longitudinal waves in polycrystals

having orthorhombic or higher symmetry is given by formulas (4.2)-(4.4), (5.1), (5.2), (2.8), (1.4), and the first
formula in (1.6).

The frequency dependence of the velocity of propagation of the transverse waves is determined similarly.
From formulas (3.1), (3.2) we get

pcXa, — sday/ds) = (5 16)[42(%* — 1)t -+ (—23 -+ 16%* L Tud)s?] —
— (15/8)u,s3[7s* + 14(1 %) 4 (T 1007 & Tut)] -+ (15/8)us¥(7st +
4 288 - 24) —{x]st - 20t + )5t L (o — 12 P 4 (4 - Tod)st -
F (6 4 15 o Bud)st - (4 + % — 20t — 38> + (1 — 3% + 3wt — %] 4 uys - gy — 75}
pc*(tz0 — sday/ds) = (1/48)130(4 — »%)s* + (13 — 8Bu? — 5ut)s?] +
1 (3/8)us"(55% + 1001 + 2)s & (5 + 6x% + 5u)] — (3/8)uys¥5s* + 206 £ 16) — wyqug -+ uystin: (.3)
peHay — sdag/ds) = (1/46)[6(x* — 1)s* + (x? — 1)s*] — (1/8)u,s*[3s* +
+ 6(1 + %%)s® + (B + 2% + 3uh)] + (1/8)u (3t + 1257 4 8) + 1y gltg — Uy plty;
pcXay — sdagids) = 1,58 — 3u,6% — uy5 -+ Uyalty;
pclay — sday/ds) = —0,58% + u,s® — uguy;,

where u, for n=0-14 are given by expression (3.2), while for n=15-17 they are given by the formula
ups = (st + 1s* - 200/ + 4% wyg = sIs® — (7 — Y]t -+ 206 + Ds® = (02 17 ); uy, = s/s® + 4). {(5.4)

Formulas (5.3), (5.4) pertain to transverse waves and therefore all the quantities occurring in these formulas
must have the index t; again, for the sake of simplicity, this index is omitted. We stress that the introduction
of the corresponding index is obligatory (n =1/M.t=cl/ct, el =cg, a7 #af, s7=sg, ete.).

Thus, the frequency dependence of the velocity of propagation of transverse waves vt in polycrystals with
orthorhombic and higher symmetry is given by formulas (4.2)-{4.4), (5.3), (5.4), (3.2}, {1.3), and (1.6),

It is evident from the formulas given above that the scattering coefficients and the velocities of ultra-
sonic waves in polycrystals have, generally, a complex frequency dependence. For matching the obtained re-
sults with the well-known formulas for low and high frequencies we carried out the limiting transition in ex-
pressions (2.1), {2.6)-(2.8), (3.1), and(3.2). Computations carried out by the method of series expansion in param-
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eter 1/s showed that the asymptotic form of the long wave (1/s=qa «1) completely coincides with the results
of [3, 4]. In the asymptotic form of short waves (1/s=qa >»1) using the series expansion in s it is found that
the correct expressions for Iyqrs are the following:

11 {11 —8 all 11
1 95 .
Ipqrs=‘p— 2P B i Prag |,
¢ —e 4ey 2c;
3

I;)qrs = -ﬁ 5 lpl’_.spr - ,lp L —— ilplr—_apr ad; | .
p 4th ci‘ — c,2 2c% !

These expressions differ from the approximate formulas presented in [3] by a numerical factor which makes a

significant contribution only in the velocity of propagation of short waves and does not change the scattering
coefficient,

Using the formulas obtained above, the scattering coefficients of longitudinal and transverse ultrasonic
waves were computed on a computer for aluminum for a wide range of wavelengths. The elastic constants of
aluminum in units of 10'! dyn/cm? are as follows [5]: c4;=10.82, cyy =6.13, cyy=2.85, and the density p =2.7
g/em®, The correlation scale a is equal to the median radius of the representations rs (1], i.e., the radius of
such a grain for which 509 of the grain representations in the eross section of the cut have radius larger than
r5, and 50% have smaller.

For the computations we took g = 0.01 cm. The results of the computations are given in Fig. 1, where
the dashes denote the corresponding dependences computed from the known asymptotic formulas of [3] for
cubic symmetry where (a®=87a% {a) =a. The numbers 1, 2 denote the scattering coefficients y((st) and
¥l (s1) for the transverse and the longitudinal waves, respectively. The quantities 1/s¢ for the transverse
waves and 1/s; for the longitudinal waves are plotted along the abscissa. Since 1/s=qa =wa/c, the same
graph describes also the frequency dependence of the attenuation coefficient. It is evident from the figure that
the asymptotic formulas can be used if qa =10 or qa < 1/10. The intersection of the curves y¢ and 7y isin
conformity with the known theoretical estimates by the asymptotic formulas according to which y¢>1v; inthe
region of high frequencies, while ¥¢ < y; in the region of low frequencies. The slope of the curves in the figure
reflects the dependence y ~w! for low frequencies and y ~w? for high frequencies, which was also confirmed
experimentally [1]. In the intermediate region where aq ~1, the slope of the curves for the transverse waves
changes monotonically ensuring a smooth transition from the dependence 7t ~wlto y¢ ~w? However, there is
no such smooth transition for the longitudinal waves. The slope of the curve described by the dependence
81ln 7/91n watfirst decreasesfrom 4 to 1, then again increases to 2.

The present study has been carried out in an approximation which takes into consideration only the paired
correlation between the inhomogeneity elements. This approach presupposes smallness of spatial fluctuations
of the modulus of elasticity tensor. For a numerical estimate of the magnitude of fluctuations the ratios of the
coefficients cmn/ < Cemn > are given in Table 1 for a number of polycrystals of orthorhombic symmetry. The
reference values of ¢y, are taken from [6], while the mean values are computed from the formulas [7]

Ceqyy == (Cpa = 2eyy 03 (6> =k —(2/3)u) 5 {cyy > ={u)s
(K= {1/9leyy + 0 + €33) - 262 4 €5 + 1) |5
{pd = (115) ey + ca2 -+ €aa) — (€12 €23 + €1a) + 3eyy + €55 + cge)l.

1t is evident that for most of these materials, the condition of smallness of the spatial fluctuations is satisfied
(emn/ < epp > = 1).

As an example of materials with large anisotropy we have shown argonite and Sr80, , for whichthe approx-
imation used here can lead to a large error.
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SOME LAWS FOR PRECIPITATION
OF AEROSOLS ON A CHARGED COLLECTOR
IN THE REYNOLDS NUMBER RANGE 10-100

V. V, Smirnov UDC 633.6.011:621.359.4

Experimental data are presented on the efficiency of electrostatic precipitation of aqueous aero-
sol particles on a strongly charged sphere in the medium Reynolds number range (Re=10-100).
The asymptotic solutions for the problem are presented, and typical errors allowable in inter-
preting this type of experiment are discussed.

Existing theoretical and experimental data [1-6] on the efficiency of the electrostatic precipitation of
aerosol particles on charged bodies of very simple shape refer mainly to cases where there is either viscous
(Reynolds number much less than 1) or uniform flow (the electric forces significantly predominate over the
hydrodynamic) of air carrying aerosols over the collector.

In a number of cases associated with filtration and elution of aerosols by precipitation particles and ar-
tificial bodies [7-10] so-called medium or intermediate Reynolds numbers (Re=>5-100) are achieved. For this
situation information on the laws of electrostatic precipitation of particles at an obstacle is practically nonex-
istent,

The present work analyzes the results of measurements of capture coefficients of neutral and charged
particles of aqueous aerosols by a fixed, charged spherical collector. The Reynolds numbers values based on
the sphere diameter fall in the range 10-100.

The experimental technique and some of the initial measurement data have been described in [7-8]. The
essence of the technique _is as follows.

A one-dimensional jet of droplets of a given size and charge is generated in a flow of moist air, washing
a metal sphere of diameter 0.4 cm. The sphere potential is varied in the range 0 to = 6000 V, and the droplet
charge from 0 to + 100e, the droplet diameter from 10 to 30 u, and the flow speed from 4 to 40 cm/sec.
From analysis of television photographs of the limiting trajectories for the droplet motion near the spherical
collector we determined the capture coefficient, defined as the ratio of the area of the stream tube of precip-
itated particles to the projected area of the sphere.

The results of the tests of interaction of uncharged conducting droplets with a charged sphere, with an
electric field intensity on its surface of 5,10,and20 kV/cm, are shown in Fig. 1; the capture coefficient K
is shown as a function of the dimensionless coagulation parameter 8, which characterizes the ratio of the mir-
ror and aerodynamic forces acting on the particle

B = (U2} 3nnD%uw)- (e — 1)/(e + 2), (1)

where d and € are the size and dielectric constant of the droplets; U and D are the potential and diameter of
the sphere; 1 is the dynamic viscosity for air; and u. is the flow velocity at infinity. We note that for U=0
dquite low values of K< 0.05 have been observed [8].
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